Skip to main content

Polaris and the Trail of Comet ZTF


Stars trace concentric arcs around the North Celestial Pole in this three hour long night sky composite, recorded with a digital camera fixed to a tripod on January 31, near Àger, Lleida, Spain. On that date Comet C/2022 E3 (ZTF) was near its northernmost declination in planet Earth's sky. That put the comet about 10 degrees from Earth's North Celestial Pole making the comet's position circumpolar, always above the horizon, from all locations on planet Earth at more than 10 degrees northern latitude. In the startrail image, the extension of Earth's axis of rotation into space is at the left. North star Polaris traces the short, bright, concentric arc less than a degree from the North Celestial Pole. The trail of Comet ZTF is indicated at the right, its apparent motion mostly reflecting Earth's rotation like the stars. But heading for its closest approach to planet Earth on February 1, the comet is also moving significantly with respect to the background stars. The diffuse greenish trail of Comet ZTF is an almost concentric arc mingled with startrails as it sweeps through the long-necked constellation Camelopardalis.

from NASA https://ift.tt/84EMmjc

Comments

Popular posts from this blog

The Galactic Center in Radio from MeerKAT

What's happening at the center of our galaxy? It's hard to tell with optical telescopes since visible light is blocked by intervening interstellar dust. In other bands of light, though, such as radio , the galactic center can be imaged and shows itself to be quite an interesting and active place . The featured picture shows the latest image of our Milky Way's center by the MeerKAT array of 64 radio dishes in South Africa . Spanning four times the angular size of the Moon (2 degrees ), the image is impressively vast, deep, and detailed. Many known sources are shown in clear detail, including many with a prefix of Sgr, since the galactic center is in the direction of the constellation Sagittarius . In our Galaxy's Center lies Sgr A , found here in the image center, which houses the Milky Way's central supermassive black hole. Other sources in the image are not as well understood, including the Arc , just to the left of Sgr A , and numerous filamentary threads....

The Observable Universe

How far can you see? Everything you can see, and everything you could possibly see, right now, assuming your eyes could detect all types of radiations around you -- is the observable universe . In light, the farthest we can see comes from the cosmic microwave background , a time 13.8 billion years ago when the universe was opaque like thick fog. Some neutrinos and gravitational waves that surround us come from even farther out, but humanity does not yet have the technology to detect them. The featured image illustrates the observable universe on an increasingly compact scale , with the Earth and Sun at the center surrounded by our Solar System , nearby stars , nearby galaxies , distant galaxies , filaments of early matter , and the cosmic microwave background . Cosmologists typically assume that our observable universe is just the nearby part of a greater entity known as "the universe" where the same physics applies. However, there are several lines of popular but spe...

Peculiar Galaxies of Arp 273

The colorful, spiky stars are in the foreground of this image taken with a small telescope on planet Earth . They lie well within our own Milky Way Galaxy . But the two eye-catching galaxies in the frame lie far beyond the Milky Way, at a distance of over 300 million light-years. The galaxies' twisted and distorted appearance is due to mutual gravitational tides as the pair engage in close encounters. Cataloged as Arp 273 (also as UGC 1810 ), these galaxies do look peculiar , but interacting galaxies are now understood to be common in the universe. Closer to home, the large spiral Andromeda Galaxy is known to be some 2 million light-years away and inexorably approaching the Milky Way. In fact the far away peculiar galaxies of Arp 273 may offer an analog of the far future encounter of Andromeda and Milky Way. Repeated galaxy encounters on a cosmic timescale ultimately result in a merger into a single galaxy of stars. From our perspective , the bright cores of the Arp 273 galaxies...