Skip to main content

The Galaxy, the Jet, and a Famous Black Hole


Bright elliptical galaxy Messier 87 (M87) is home to the supermassive black hole captured in 2017 by planet Earth's Event Horizon Telescope in the first ever image of a black hole. Giant of the Virgo galaxy cluster about 55 million light-years away, M87 is rendered in blue hues in this infrared image from the Spitzer Space telescope. Though M87 appears mostly featureless and cloud-like, the Spitzer image does record details of relativistic jets blasting from the galaxy's central region. Shown in the inset at top right, the jets themselves span thousands of light-years. The brighter jet seen on the right is approaching and close to our line of sight. Opposite, the shock created by the otherwise unseen receding jet lights up a fainter arc of material. Inset at bottom right, the historic black hole image is shown in context at the center of giant galaxy, between the relativistic jets. Completely unresolved in the Spitzer image, the supermassive black hole surrounded by infalling material is the source of enormous energy driving the relativistic jets from the center of active galaxy M87. The Event Horizon Telescope image of M87 has been enhanced to reveal a sharper view of the famous supermassive black hole.

from NASA https://ift.tt/6ujA4ZS

Comments

Popular posts from this blog

Lightning and Orion Beyond Uluru

What's happening behind Uluru? A United Nations World Heritage Site , Uluru is an extraordinary 350-meter high mountain in central Australia that rises sharply from nearly flat surroundings. Composed of sandstone , Uluru has slowly formed over the past 300 million years as softer rock eroded away. In the background of the featured image taken in mid-May, a raging thunderstorm is visible. Far behind both Uluru and the thunderstorm is a star-filled sky highlighted by the constellation of Orion. The Uluru region has been a home to humans for over 22,000 years. Local indigenous people have long noted that when the stars that compose the modern constellation of Orion first appear in the night sky, a hot season involving lightning storm s will soon be arriving. from NASA https://ift.tt/3uy2PLM

A Phoenix Aurora over Iceland

All of the other aurora watchers had gone home. By 3:30 am in Iceland , on a quiet September night, much of that night's auroras had died down. Suddenly, unexpectedly, a new burst of particles streamed down from space, lighting up the Earth's atmosphere once again. This time, surprisingly, pareidolia cally, the night lit up with an amazing shape reminiscent of a giant phoenix . With camera equipment at the ready, two quick sky images were taken, followed immediately by a third of the land. The mountain in the background is Helgafell , while the small foreground river is called Kald����, both located about 30 kilometers north of Iceland's capital Reykjav����k . Seasoned skywatchers will note that just above the mountain, toward the left, is the constellation of Orion , while the Pleiades star cluster is also visible just above the frame center. The 2016 aurora , which lasted only a minute and was soon gone forever -- would possibly be dismissed as an fanciful fable -...

Stephans Quintet from Webb, Hubble, and Subaru

OK, but why can't you combine images from Webb and Hubble? You can, and today's featured image shows one impressive result. Although the recently launched James Webb Space Telescope (Webb) has a larger mirror than Hubble, it specializes in infrared light and can't see blue -- only up to about orange. Conversely, the Hubble Space Telescope (Hubble) has a smaller mirror than Webb and can't see as far into the infrared as Webb, but can image not only blue light but even ultraviolet . Therefore, Webb and Hubble data can be combined to create images across a wider variety of colors. The featured image of four galaxies from Stephan's Quintet shows Webb images as red and also includes images taken by Japan 's ground-based Subaru telescope in Hawaii . Because image data for Webb , Hubble , and Subaru are made freely available, anyone around the world can process it themselves, and even create intriguing and scientifically useful multi-observatory montages...