Skip to main content

SN Requiem: A Supernova Seen Three Times So Far


We've seen this same supernova three times -- when will we see it a fourth? When a distant star explodes in a supernova, we're lucky if we see it even once. In the case of AT 2016jka ("SN Requiem"), because the exploding star happened to be lined up behind the center of a galaxy cluster (MACS J0138 in this case), a comparison of Hubble Space Telescope images demonstrate that we saw it three times. These three supernova images are highlighted in circles near the bottom of the left frame taken in 2016. On the right frame, taken in 2019, the circles are empty because all three images of the single supernova had faded. Computer modeling of the cluster lens, however, indicates that a fourth image of the same supernova should eventually appear in the upper circle on the right image. But when? The best models predict this will happen in 2037, but this date is uncertain by about two years because of ambiguities in the mass distribution of the cluster lens and the brightness history of the stellar explosion. With refined predictions and vigilant monitoring, Earthlings living 16 years from now may be able to catch this fourth image -- and perhaps learn more about both galaxy clusters and supernovas at once.

from NASA https://ift.tt/3CD5CaC

Comments

Popular posts from this blog

The Observable Universe

How far can you see? Everything you can see, and everything you could possibly see, right now, assuming your eyes could detect all types of radiations around you -- is the observable universe . In light, the farthest we can see comes from the cosmic microwave background , a time 13.8 billion years ago when the universe was opaque like thick fog. Some neutrinos and gravitational waves that surround us come from even farther out, but humanity does not yet have the technology to detect them. The featured image illustrates the observable universe on an increasingly compact scale , with the Earth and Sun at the center surrounded by our Solar System , nearby stars , nearby galaxies , distant galaxies , filaments of early matter , and the cosmic microwave background . Cosmologists typically assume that our observable universe is just the nearby part of a greater entity known as "the universe" where the same physics applies. However, there are several lines of popular but spe...
Why is the sky near Antares and Rho Ophiuchi so colorful, yet dusty? The colors result from a mixture of objects and processes. Fine dust -- illuminated by starlight -- produces blue reflection nebulae . Gaseous clouds whose atoms are excited by ultraviolet starlight produce reddish emission nebulae . Backlit dust clouds block starlight and so appear dark . Antares , a red supergiant and one of the brighter stars in the night sky , lights up the yellow-red clouds on the upper right of the featured image. The Rho Ophiuchi star system lies at the center of the blue reflection nebula on the left, while a different reflection nebula, IC 4605 , lies just below and right of the image center. These star clouds are even more colorful than humans can see, emitting light across the electromagnetic spectrum . from NASA https://ift.tt/fdIYn7J

The Galactic Center in Radio from MeerKAT

What's happening at the center of our galaxy? It's hard to tell with optical telescopes since visible light is blocked by intervening interstellar dust. In other bands of light, though, such as radio , the galactic center can be imaged and shows itself to be quite an interesting and active place . The featured picture shows the latest image of our Milky Way's center by the MeerKAT array of 64 radio dishes in South Africa . Spanning four times the angular size of the Moon (2 degrees ), the image is impressively vast, deep, and detailed. Many known sources are shown in clear detail, including many with a prefix of Sgr, since the galactic center is in the direction of the constellation Sagittarius . In our Galaxy's Center lies Sgr A , found here in the image center, which houses the Milky Way's central supermassive black hole. Other sources in the image are not as well understood, including the Arc , just to the left of Sgr A , and numerous filamentary threads....